Introduction to ADO.NET Using ASP.NET
Adding A New Record Into the Grid Using Controls in the Footer of the Grid

Editing A Template in the DataGrid Control

[image: image1.png]=181]

AccessMDB!

Ele Edt Vew Projct Buld Debug Data Fomat Tabe Frames ook Window Help

LRy = - I YRR - B =Y e - o BiErorvisble = True BREERE-.
& |[E])[E]. - -] AL Ce 2 ulA g
Step2aspx | Step 3.aspcub | ExccutelionQuery Method | Step S.aspw* | step2.aspxb | 4 b x | [Properties (%3
btnNew_System.Web.ULWebConrob Button =
HEE
(atatindings)
©) boNew
Accessiey
BackColor O
BorderColor =
= Bordersityle Hotset
Bordertidth
Add/Edit Records Cancel Editing Close
T could not read the customer database.... | Commandargument
Commandilame AddNew
Cssclass
HeaderTemplate Enabied e
I Enabetienstate e
Font
TtemTenplate G -
Edit Height
Tablndex o
EditenTenplete i ndd New
ToalT
vible e
FaoterTenplate t
Add New [0
« | _l_‘
W OkDbDetandapter! B OleDbComnectiont € Dssten3t
CommandName
The command associted with the button
G Design | & HIML |
Tasst |
Ready





In order to let them use the datagrid to add a new record, I use the grid’s footer. In the grid’s properties you set ShowFooter=True. Then you can customize the column by putting a regular button in the cell so when they want to add a new record, they just click it.

This process of customizing the columns is called creating a template column. You actually convert an existing column to what VS calls a template. I think customized column is a better term. I converted all the columns of the grid to templates so I could put textboxes in the cells for people to put in the new customers data.

To edit/customize a template column/cell, right click on the grid and choose Edit Template… It will then show you the columns and you select one. You can only edit one template at a time.
For column 0, I added a button control to the footer template area on the little window. I named it and adjusted its size. See screen shot above.

Notice that on the properties of this new “AddNew” button, I named it AddNew but I also set the “CommandName” property to AddNew. This is critical because later, I have to use it in my code to see if they clicked the add button or some other button. This is trapped in the DataGrid1_ItemCommand event.
I then edited each successive column template and placed textboxes in the footer cells of each one and named them txtNewLast, txtNewCity, etc. and I also set the MaxLength property to the width of the field in the DB. “State” was set to 2, for instance so they can’t type in anything longer than the database field specification (CA, NV, OR).
When you are finished editing each cell, right click on the template window and choose End Template Editing to return to your grid. Remember, you can only make changes to the custom controls by editing the template for each column

Trapping/Responding to the AddNew Button
In this next section, you can see how I trap the AddNew command I specified in the properties of the AddNew button I added to the footer template. The DataGrid1_ItemCommand is fired just before the page is rendered so we are essentially creating a custom event procedure where we can trap the commands we define. In this case, I called the CommandName “AddNew” when I created the button…remember? Well notice that this sub has access to the CommandName property through the DataGridCommandEventArgs object. It has a property they call “e” and in my error handler, I check to see if they did in fact click the AddNew button:


            If e.CommandName = "AddNew" Then
If they clicked it, I have to grab what they typed in each of my custom textboxes and put the data into some temp variables. Notice I use e.Item to find the correct row and the FindControl method to locate the textbox that holds the data for each cell. I do them in order so I started with Last Name and moved on. I use CType to convert from a textbox to a string so I can grab the text property of each textbox. It looks more complicated than it is. You tell FindControl to locate the textbox name…the name I gave them when I created/edited the template column. The last .Text just tells VB to take what it finds in the textbox and convert it to string data.
Private Sub DataGrid1_ItemCommand(ByVal source As Object, ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) Handles DataGrid1.ItemCommand

        '---be sure to type in a new commandname property for the Add New button in the footer template.

        '   You can call it anything but we will refer to it here. I called mine "AddNew".

        '---now test whether they clicked btnAddNew and grab the stuff from each textbox.

        Try

            If e.CommandName = "AddNew" Then

                Dim t1 = CType(e.Item.FindControl("txtNewLast"), TextBox).Text

                Dim t2 = CType(e.Item.FindControl("txtNewFirst"), TextBox).Text

                Dim t3 = CType(e.Item.FindControl("txtNewMiddle"), TextBox).Text

                Dim t4 = CType(e.Item.FindControl("txtNewStreet"), TextBox).Text

                Dim t5 = CType(e.Item.FindControl("txtNewCity"), TextBox).Text

                Dim t6 = CType(e.Item.FindControl("txtNewState"), TextBox).Text

                Dim t7 = CType(e.Item.FindControl("txtNewZip"), TextBox).Text

                Dim t8 = CType(e.Item.FindControl("txtNewCustID"), TextBox).Text

Getting Ready To Add the New Record

Now that we have each new piece of data they typed in for the new customer, I need to create a SQL string that we can pass to the dataadapter. We need it to Insert a new record into our DB.  I start with INSERT INTO customers so it knows which table. Then we list the db field names…the DB FIELD NAMES exactly as they are defined in the DB table.

I broke it down into two lines using the &= characters. The values clause holds the data we just grabbed. Notice the format and be really careful when typing. T1 corresponds to lastname data, t2 corresponds to firstname, and so forth. Just make sure they are in the same order. You are telling the SQL that the “t1,t2,t3” guys hold the data for the DB fields. In this way it will put the correct data into the correct field. 
                Dim SQL As String

                SQL = "INSERT INTO customers(lastname,firstname,MiddleInit,StreetAddress,City,State,Zip,CustID)"

                SQL &= " values('" & t1 & "','" & t2 & "','" & t3 & "','" & t4 & "','" & t5 & "','" & t6 & "','" & t7 & "','" & t8 & "')"

Now we create a new command object. Do you recall that the data adapter wizard made these for us? Well it did. But now, we need to create a new one because we need to tell the DA exactly what and where our data is. These command objects can do all kinds of tasks and they work for Access or SQL databases.
So now, pass the command object the SQL we just made and tell it which connection object to use. I used the toolbox controls so I have to use the names of them here. I didn’t rename them so I have to use the entire name here.  Then you have to open a connection to the database manually.
                Dim cmd As New OleDbCommand(SQL, OleDbConnection1)

                OleDbConnection1.Open()      'we have to do this manually

We then tell the dataadapter to use OUR NEW insert command, not the one it made for us when we ran the wizard. Finally, we make it run by using the ExecuteNonQuery method. This lets us manage databases without using a dataset…just seems easier.
Then make sure to close the connection. This will allow others to access the DB. Too many open connections means slow response time!
                OleDbDataAdapter1.InsertCommand = cmd

                cmd.ExecuteNonQuery() 
                OleDbConnection1.Close() 
                btnEditRecords.Visible = True

                BindMyGrid()

            End If

Always get into the habit of closing your DB connection in the finally block to make sure you aren’t leaving the DB open.


Catch

            lblError.Text = "I could not add new record..."

            lblError.Visible = True

        Finally

            OleDbConnection1.Close()      'this is good practice just to make sure it is closed

        End Try

    End Sub
PAGE  
1

