
1

E S P 3 2 CANBUS DEMO V1

Wednesday, April 23, 2025
Ron Kessler

This paper describes how to connect ESP32 DoIt DevKit breakout boards in a
Canbus network and OLEDs for the transmitter and receiver (Figure 1). The
transmitter sends a standard packet and an Extended packet every 5 seconds to
the receiver. The first message sent is a simple “Hello” string and the extended
packet transmits “Old Dog” as its data string. This is the first attempt at using
this type of network with ESP32’s and shows the basic operation needed to get a
simple network up and running.

While many Arduino CanBus projects use the MCP2515 SPI board to manage the network, this
demo uses the small TJA1050 transceiver (Figure 2). In this configuration, the SPI hardware of a
MCP2515 is integrated in the ESP32 module. This greatly improves performance and simplifies
the design. In Figure 1, the TJA1050 is mounted on the controller’s breakout board using a small
standoff.

This paper assumes the reader has a basic understanding of how Canbus networks are
configured and the basic topology of those networks. Consequently, we will focus on
understanding the signals that are decoded by the receiver MCU.

Figure 1: General Layout with two ESP32 Do It
Microcontrollers and Start-Link connector for two branch
lines.

Figure 2: TJA1050 transceiver
board manages CANBUS
communication via a UTP cable.
The MCP2515 is integrated into
the ESP32 and is not used here.

2

Decoding Canbus Packets

Figure 3 shows the CAN signals captured on the oscilloscope. The yellow trace is Can-H and the blue one is Can-L. Each bit is
2µs wide and that equates to a frequency of 500Kb/s (Freq. = 1/.000002). You
could examine this bit pattern and decode the message yourself. However, the
easiest method of decoding automotive network communications is to use an
oscilloscope that can interpret the pulses for us. I used a Pico Automotive 4225
dual-channel USB scope. Refer to Figure 4 as you read this section.

The different colored sections in the middle of Figure 4 shows some of the
different components/fields of a packet:

1. The orange is the packet ID which is #012).
2. Green is for Data Length Code and is a 4-bit number representing the

total size of the data payload.
3. The blue section represents the actual data payload.
4. The turquoise is for the cyclical redundancy check which makes sure all the bytes have been received.

Turn your attention to the blue section and notice the first byte is Data-48. The value 48 is a hexadecimal number. In ASCII
format, that equates to the letter ‘H’. The next byte is 65 and equates to ‘e’. The remaining fields show 6C, 6C, and 6F. Taken
collectively, the hex values: 48, 65,6C,6C, & 6F = ‘Hello’ which is the standard packet received by my ESP32. The last value in
the data field = 20 which is simply a blank space. The extended packet (not shown) is sent 5 seconds later and would show up
as ‘Old Dog’. The 5 second delay was added to make it easier to read the messages on the OLEDs.

Figure 3: Owon Handheld scope shows the Can-H
and Can-L signals.

3

The “Hello” data is
decoded from this
packet.

 H e l l o space

Figure 4: Pico Automotive 6 decoded image of the received packets from this layout. It shows the pulse rate/width and shows the data packet decoded into ASCII. See red arrow that
shows "Hello" was received in this packet.

4

More to come! Stay tuned.

5

