Advanced Programming Series: Object Orient Programming
Page 11

Santiago Canyon College

Computer Science

Ronald P. Kessler

Introduction to Object–Oriented Programming (OOP)

Good morning Mr. Phelps. Microsoft and other major corporations have endorsed a new programming scheme know as OOP. We need to know more about this. The challenge for you and your team will be to decipher and demystify the components of OOP. What is a class, inheritance, polymorphism and shadowing? These sound sinister and could prove to be a threat to our way of programming as we know it. As usual, should you or your IT staff be discovered, we will deny any knowledge or understanding of OOP. Which, in this case would be the truth!

My initial exposure to OOP left me feeling overwhelmed and stressed out. I felt like Microsoft had ruined VB6 and created this new .Net creature. I tried to make a messagebox show up in VB.Net 2002 and couldn’t figure it out. I really felt like my programming career was over. But after several months of denial and avoidance, I decided to try it again. With the help of my good friend, Tony Lee, we slowly fumbled our way through the new programming model. Now, I love this .Net stuff and wouldn’t go back. As you study and struggle and become frustrated, please do not do what I did. Don’t give up. If you discover that you like programming, you will succeed and you will feel a great sense of satisfaction when you see others using your creations. Trust me, it is not impossible!
This document is my attempt to explain and summarize the features and philosophy surrounding object-oriented programming. I have never found a complete summary in one place that explained these strange sounding terms. Consequently, I have searched around and compiled a table of this information for you.

I want you to try and keep a couple of things in mind as you read this. One of the major benefits of the OOP model is that it allows developers to create new products and bring them to market faster than ever. To accomplish this, Microsoft created RAD (Rapid application development) tools like Visual Studio. These software development applications contain the tools we need to build sophisticated Windows and web programs. The idea of OOP is simple. Programs should be created that can be easily expanded for future needs and features (extensible). Programs should be written for easy maintenance & modification and easily transportable to other projects (inheritance & polymorphism). Code should be self-contained or encapsulated so we can use it again in new projects (code reusability). Since the code we write will be placed into discrete sections (classes, sub routines, and functions), several people can be working on different parts of the project simultaneously. OOP lends itself to a team approach. If you were developing a new game program, you would have some people working just on the artwork and interface while another group would be actually writing the code.

Classes contain the programming code, any data, properties, methods & events we create and are saved in their own disk file. Think of how we use a Windows form. It is a class based upon the original form class created by MS. We simply add the form specifications from the .Net library to our project. Then, we have access to all the capabilities of our new form object. Then we can add to it and customize it to suit our needs. The point is, we do not have to create a new control (form, buttons, etc.) from scratch every time we need one. We start off with a sort of template and go from there. That is what inheritance is all about. OOP gives us the ability to use one class in order to create a brand new class that is a clone of the original. In this way, we can make it do anything we need it too without messing up the original!

You add a Class to your projects from Solution Explorer. Once your class is completed, you can use it to bring your new creation to life. This process is called instantiation. When you instantiate an object, it means you create it for use. Then we say you have an instance of that object running. Picture this. When you start MS Word and then launch another copy of Word, you have two instances of Word running on the computer inside their own process. Each process is managed by the O/S. Well, in Visual Studio, each program, its objects, properties & methods are all managed by the common language runtime program (CLR). The CLR in turn, communicates with the O/S to run our application. The CLR is responsible for routing O/S events to our application. When the user pushes a key, Windows alerts the CLR and it directs that action to the Keypress event in our application where we handle it, for instance.
I really like a cool feature of OOP called “reusability”. By breaking programs into self-contained parts, it allows programmers to easily change things without having to spend time searching around to find where a particular piece of code is. If I create a class called “Customer” and it has all the properties and methods to handle customer information, I will be able to work on that class alone when I make changes. I do not have to disturb the class called “GetData” or “SearchDatabase”, for example. You see, all the functionality and features are self-contained inside their own classes. This is called “encapsulation”. This also makes it easier to create a new product in the future as well. If I want to create a new game based on the previous version, I can add the pieces and parts I need from the old one and add it to my new project without having to start from scratch.

Inheritance

I would like you to imagine yourself wearing two hats. One hat your wear is that of a developer and the other one as a programmer. What I mean is this. As a developer, you are creating classes that programmers are going to use to make things. Microsoft is a developer of tools and classes like the ones in the .Net framework. We, as programmers use those tools and built-in classes so we can make programs for our own customers. Keep this model in mind as you read this section.
As a developer, you have control over what a programmer can do with your class. You can create it in such a way so the class can be “cloned” and modified. Microsoft did this for most of the .Net classes. They have allowed us to create new controls from their controls. If they didn’t design them that way, then we would not be able to accomplish yet another aspect of OOP called “extensibility”. This is a big word that simply means that classes and objects should be designed to handle future needs and expanded capabilities. If I create a class that reads a database but I limit it to only 1500 records, my class is not extensible. But if I create a property to let the programmer decide how many records to access, it is more extensible.
The ability to create new classes from a parent or base class is called inheritance. Just like you and I inherit DNA from our parents, OOP allows us to create new classes from existing ones. While you and I are not clones, we do have similar traits as other family members. In the case of computer programming, we can create clones of existing objects and then modify them as we need to. That way we do not have to start from scratch (remember RAD?). Look at how easy it is to create a new textbox called RKTextBox from the textbox control that comes with VS. In VB we use the Inherits keyword.

Public Class RKTextBox

Inherits System.Windows.Forms.TextBox

End Class
One of the cool things about inheritance is that we can take the child class (sometimes called subclass or derived class) and add our own features to it or substitute our properties/methods for the identically-named ones in the parent or base class. Remember, the child is a clone of the parent. So it has the identical properties & methods as the original. That means the new class has the same property names too. That’s right. I can create a new textbox control and change the way the “text” property works in my new control while maintaining the name “text”. This expands your options. You can decide to use the Keypress event from your base class or the KeyPress event from the child class! This gives programmers unprecedented control over the objects we create. You can decide what people can do with your new class. Then, you can decide what they can do with the members of that class (the properties, methods, & events). For instance, you can decide whether to allow or disallow a programmer from inheriting your class at all. If you decide to not let someone inherit your class, we say your class is “sealed” and no one can modify it or add more features to it. I suppose if you had a patented procedure or high security process that you needed to keep it a secret, it would make sense to do that.
In VB, you use the keyword Inheritable or NotInheritable when you create your class. You can also use the keywords Overridable or NotOverridable when you create Subs or Functions inside your class. These commands will either (1) let a programmer create a new method with the same name as your original, or (2) not allow the method to be overridden. Remember, the Subs & Functions we create in a class are viewed as methods to the programmer using our classes (even if the programmer is us!).
In VB we would block inheritance of our class like this:
NotInheritable Class ComputeTax

TotalTax = x * .08
End Class

Polymorphism
Finally, there is the concept of polymorphism. Here is yet another big word that just means that two different objects in different forms can be treated as the same. Polymorphism is responsible for how inheritance works. In fact, I guess we should think of it as an attribute of inheritance and not a separate thing. Remember what I said before, if I create a new class that inherits all of its attributes from another class my new child class is like a clone. If the parent class had a text property, so does my new one and it will work the same way.

Furthermore, inheritance & polymorphism allow us to substitute a method from our child class for the one of the same name in the parent class. In other words, the text property in my child class can be used instead of the text property in the parent. This lets me add/change the capabilities of a method but still use the same name. This allows me to “substitute” my new method for the old one. But, I can still use the original if I need to. In VB I would use MyBase.Text to access the text property of the base or parent class. If all this sounds confusing, don’t feel alone. Until you actually play with this stuff for a while, it is hard to digest.

Polymorphism allows us to do something else that is quite useful. Think of the MessageBox.Show function that comes with VS for a second. You know that there are numerous ways to call or use MessageBox. Look at these examples:
MessageBox.Show("Welcome to my store")

MessageBox.Show("Welcome to my store", "Ron's Store")

MessageBox.Show("Welcome to my store", "Ron's Store", MessageBoxButtons.OK, MessageBoxIcon.Information)

I want you to notice the different ways I called the Show method. I used a different list of parameters each time. But also notice that I did not have to call three different messagebox’s. In other words, MS wrote this so I could use the same name object & method (MessageBox.Show) but they made it accept different arguments to fit my needs. This is called Overloading. You will find it very useful when you want to allow yourself or other programmers to do this same thing with the methods you create! When I looked at MessageBox in the Object Browser inside VS, I discovered that there are 21 different ways to call the Show method!
Constructors
I want to talk about something else that will hopefully show you how overloading can be of benefit to you. When you run your application in VS, the class definitions for the objects (forms, controls, etc) are compiled into something called an assembly. The assembly is MSIL code, not machine code. This .EXE file is the code executed by the CLR & O/S. By the way, when you hear someone talk about “managed code” I want you to know that they are referring to an assembly that is managed by the CLR. Anyway, when an object is being created, VB runs a special Sub called “New”. In most VB programs we don’t create this sub so it is created for us. However, I am going to show you a reason for doing it yourself.

The Sub called “New” is called a constructor. I guess they call it that because this sub runs just after your object is created and before it becomes visible (like a form or control) or before it can be used. It is a place for you to put in some code to initialize the object. In previous versions of VB, there was a sub called “initialize”. They got rid of it and we now use this constructor in the same way. Now, keep Messagebox in mind as I describe something to you.
Let’s say I create a new class called “ReadAFile”. Just like MS did with Messagebox, I decide to let my programmers have options when they use my class. They can just call the class, they can call it and pass the name of the file to open, or they can pass the name of the file and the filemode (read, write, append). If they don’t’ pass in all the parameters, I assign default values for them.
In order to let someone have this flexibility with any class, you create multiple subs all with the same name of New. Yes, you can have multiple sub routines in a class with the same name. This process is called overloading. Look below at my code. The first constructor takes no arguments but the second one takes a string to hold the filename they want to open. The third constructor takes two arguments. These different constructor subs just give programmers options for how they instantiate my class.
Public Class ReadAFile

 Private m_FileName As String

 Private m_FileMode As String

 Sub New()

 'This constructor is used when they do not pass parameters when the class

 'is instantiated.

 End Sub

 Sub New(ByVal NameOfFile As String)

 '---this constructor is used if they pass the name of the file

 m_FileName = NameOfFile
 End Sub

 Sub New(ByVal NameOfFile As String, ByVal FileMode As String)

 '---this constructor is used if they pass the file name & the filemode

 m_FileName = NameOfFile

 m_FileMode = FileMode

 End Sub

End Class

Notice I have three Subs called “New”. Each is a constructor with a unique signature. A signature refers to the arguments the Sub or Function takes. Each Sub is seen as a separate routine by the compiler because each has a different set of arguments. An argument is simply the list of things you can pass into the Sub and in the case of a function, the type of object that is returned by that function. How does VB know which one to use? Well, the compiler has been designed to use the one where the signature of the Sub or Function matches the one “Dimmed” by the programmer.
When programmers want to use my class, they have three options because I created three overloaded constructors!
 Dim MyFileReader As New ReadAFile()

 Dim MyFileReader As New ReadAFile(FileName)

 Dim MyFileReader As New ReadAFile(FileName, FileMode)

So the next time you use the “new” keyword, try to imagine how VB runs the code that creates your object. After creating the object from a class, VB looks inside the constructor(s) to see if there is anything it should do to set initial values. When the object is Dimmed the compiler will match the Dim statement and the parameter list with those in the constructors. If there is a match the object is created. If there is not any constructor that matches the argument list, then you get a compiler error and the program will not run.

More Options with Inheritance

As you have come to expect with all this .Net stuff, there are many ways to do the same task. Well, all this inheritance stuff is no exception. Try to remember this, when you use the New keyword, an object is created. When you create an object in code, you then have access to all the members (properties, methods, & events) associated with that object. However, if you do not use the New keyword to Dim an object, you do not have access to all its members (properties & methods). So what is the big deal you ask? Well, it turns out that you can access a method from a class without actually creating it. Just when you thought you had this figured out, I have to mention this!

I have read several articles on when to use the New keyword and when not to. Here is the gist of the story….If you need access to all the properties and methods of an object then use “New” when you dim it. If those methods need to use other methods in your object, then use “New”. That is simple enough. But, MS (or someone) decided to give us a chance to use a method without going to all the trouble of creating an object. This, they figure, will save CPU cycles and some memory and make your application run a bit faster.

In order for this to work, the developer must create the method with the keyword “Shared”. In VB we would do this:

Public Class MathMaker

Public Shared Function DoMath(ByVal FirstNumber As Int16, ByVal SecondNumber As Int16) as Int16

Dim result as Int16 = FirstNumber + SecondNumber

Return result

End Function

End Class

and in C# we would use the static keyword like this:
public static bool IsPresent(txtZip)

If a function (method) is declared as Shared it means the programmer can access it without instantiating the object! To use it, I could do this:

Public Class MathMaker

Public Shared Function DoMath(ByVal FirstNumber As Int16, ByVal SecondNumber As Int16) as Int16

Dim result as Int16 = FirstNumber + SecondNumber

Return result

End Function

End Class

Dim myTotal as Int16 = 0

myTotal = MathMaker.DoMath(9,14)

If DoMath was not declared with the Shared keyword, I would have to do this:

Dim myAdder as New MathMaker

Dim myTotal as Int16 = 0

myTotal = myAdder.DoMath(9,14)
Do you see the difference? Any property, field (private variable inside a property is called a field), Sub, or Function that is defined with “Shared” can be accessed this way. Keep in mind, that MS did this to make things a bit easier but these shared members can’t access data from any non-shared member even from the same class. So here is what I do. When I am programming stuff for myself, I often create shared functions. That way I can simply use them without instantiating an object. It just makes things a bit simpler sometimes. It is just another of the million options you have when you are developing Windows applications!
I hope this article has helped you to understand and appreciate the enormous capabilities of OOP. Think about how you architect your applications with these constructs in mind and I think you will end up writing much better code. At any rate, don’t lose your sense of humor with all this. Be creative and productive. As always, this report will self-destruct as soon as you finish reading it!

Summary of Object-Oriented Programming Concepts
	Item
	Purpose
	More details…

	Objects
	· A Class is a file that you create which defines all the programming, data, features & capabilities of an object.

· Objects simulate real-world things in software and are created from a class definition.
	A class is the code and data that defines the object to be instantiated (created). When a program is compiled into MSIL, it is created inside of an assembly. This assembly is an .EXE file for Windows apps and a .DLL for web applications. This is the file that is executed on the client machine.

	Abstraction
	A limited representation of a real thing. Objects in the computer are modeled after things we experience in life. But not every aspect of a real-world thing is created.
	Only the members (Properties/Methods/Variables) that are of use to the end user are visible. The object is like a black box. Programmers use the members of the class to work with it.

	Encapsulation
	All code to make the object perform its job is contained inside the object itself.
	I design properties/methods for programmers to use. They don't have to know how everything works internally to use my object.

	Inheritance
	OOP lets us create new classes based on another class. My new class inherits all the capabilities of the parent or base class.
Developers decide if they will let someone customize their class. If I do not want someone to modify or extend my class, I create it using the NotInheritable keyword. This seals the class.
VB:
NotInheritable Class ComputeTax
TotalTax = x * .08

End Class

C#:

sealed class ComputeTax

If I wanted to force someone to inherit my abstract class I use MustInherit:

VB:
MustInherit Class ComputeTax

TotalTax = x * .08

End Class

C#:

abstract class ComputeTax
	An object can be created that inherits the capabilities of the parent. The new class is called a child class, subclass, or derived class.

I can create a new object like a clone of the parent. When I create a new button on my form, I am creating a child button based upon the MS button class that they made for us. That way, all buttons I make will be the same.

Let’s say I want to create a new textbox called RK_Textbox that will filter what users can type into it. Instead of creating a new textbox from scratch, I can create my new control based upon a base class. In this case, Textbox. That way, my new control will have all the capabilities of the original that comes with VS.
Once I define it, I can add my own properties and methods so it will do everything the original does and more! You can use this technique for any class, not just controls. You can make a class from scratch and then create another later based on the first one you made. This saves a huge amount of time as you can imagine!

VB:

Public Class RK_Textbox

Inherits System.Windows.Forms.TextBox
End Class

C#:

class RK_Textbox: System.Windows.Forms.TextBox

	Polymorphism
	Polymorphism influences code in three ways:
· As a feature of Inheritance we create child objects from parent objects.

Polymorphism allows us to create a new object based on a base (parent) class then treat that new object (child) just like the original. A child class can also have its own version of the parent’s property or method. I can use the same name but substitute my own function for the original or base function. Using the same name keeps things consistent.

Developers can choose whether to let someone override or substitute their method for the original. If my method starts with Overridable then they can. If I use NotOverridable when I define the method they cannot.

Class Customer

Public Overridable Sub GetZipCode

‘get the zip code here

End Sub

End Class

C#:
class Rectangle : Shape{
 public override void CalculateArea(){
 this.Area = _height * _width;
 }

 }

· Overloading allows multiple versions (signatures) of the same method. See my discussion about constructors.
· Shadowing (VB Only) lets you substitute arguments & return types for the one in the base class but still use the same name.
	I can create a new class that inherits from the customer class. But I want the GetZipCode method of this new class to do something different than the way the original works. Polymorphism lets me do this.
Class Customer

Public Overridable Sub GetZipCode ()
‘get the zip code here

End Sub

End Class

Class NewCustomer

Inherits Customer

Public Overrides Sub GetZipCode()
‘do something different with zip code here

End Sub

End Class

Notice how two Subs, named the same can be used to over-rule the original. But, the overriding class MUST use the same list of arguments as the base class!
I CAN call the original method using MyBase.GetZipCode if I need to.

I can substitute my new Sub for the original and keep only the same name if I use the SHADOWS modifier like this:

VB:

Public Shadows GetZipCode (ByVal City as String)

C# does not allow this. You can only change access level and the return type. The arguments must be the same.

Overloading refers to the process of creating two or more versions of the same function (method). Notice here that only the names are the same. My new Sub takes an argument the original did not. This allows options just like with the MessageBox Show method.
Private Function DoFormat (x as Int16) As String
Return FormatNumber(x, 2)

End Function

Private Function DoFormat (x as Int16 , y as Int16) As String

Dim Answer as Integer = x + y

Return FormatNumber(Answer, 2)

End Function

	Members & Scope
	· Member is the term used to describe the properties, fields, variables, events & functions defined in the class.

· Scope determines the type of access users have to these members. You use access modifiers when you declare Subs, Functions, or Classes.
	Access Modifiers That Determine Scope Options in VB.net:

PUBLIC means the members can be accessed from any class or other assembly.
PRIVATE means the method/property/variable is only accessible to the class where they are defined. They are not accessible from inherited classes.

PROTECTED means the member can be accessed from the same class & any inherited class.

FRIEND makes members accessible to classes in the current assembly.

PROTECTED FRIEND means the member can be accessed from the same class, inherited class, or classes in current assembly.
SHARED (Static) means the method can be accessed without instantiating the entire object.

VB: Public Shared Function DoMath() as Boolean

C#: public static bool IsPresent(txtZip)

In C#, Friend is replaced with INTERNAL.

